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A list of diagnosis and robustness checks is documented in this appendix.  

 

A. Serial correlation and Heteroscedasticity issues 

The Fixed Effect regression model usually computed with panel data set assumes that the 

disturbances are homoscedastic with the same variance across time and individuals. To test 

heteroscedasticity issues, we use the Modified Wald test for group-wise heteroscedasticity in 

fixed effect regression model residuals. The null hypothesis specifies that   
           

              is the number of Cross sectional units (countries here). The test is distributed 

as a Chi Square under the null of homoscedasticity. The result of the Wald test applied to the 

FE regression model of the table 3 (similar to the model used in column 1 without standard 

errors clustering) leads to reject the null hypothesis of homoscedasticity in the residuals of our 

FE regression model and show that this issue must be taken into account in our estimates.  

H0: σ (i)
2
 = σ

2
 for all i: 

chi2 (121)  =   1.9e+05 

Prob>chi2 =      0.0000 

 

The presence of group-wise heteroscedasticity is not surprising since different variances in 

different samples (deforesting countries in our case) could lead to heteroscedasticity and serial 

correlation issues.  

 

We thus compute estimates using standard errors clustering to obtain valid inference for the 

usual Fixed Effect estimator (see tables 3 to 5 in the Manuscript). Indeed, using standard 

errors clustering, standard errors are robust to clustering that is to potential within-cluster 

correlations. For instance model errors for different time periods for a given country may be 

correlated, while model errors for different countries are assumed to be uncorrelated. Failure 

to control for within-cluster errors correlation can lead to misleading narrow confidence 

intervals, large t-statistics and low p-values.  

 

We used a bootstrap method (non parametric approach for evaluating the distribution of a 

statistic, based on random re-sampling), which tests for the normality of residuals, with a 

variance that is increased by simulation (very close to the Monte Carlo method for generating 

larger samples and more robust variance for a given distribution). Other re-sampling methods, 

such as jackknife, may be used, but the bootstrap estimate of model prediction bias is more 

precise than jackknife estimates with linear models such as multiple regression.  

Overall, the inference is robust to serial correlation and heteroskedasticity of unknown form. 

Results using clustering are reported in the paper in tables 3 to 5. Note in addition that serial 

correlations and heteroscedasticity issues are neglectable when we use a panel with large N 

and small T as in our case.  

Finally, we also test serial correlation that could biases the standard errors using the 

Wooldridge test (2002) implemented by David Drukker under Stata Software. Based on the 



FE regression model of table 2 of the paper, column 1, we find evidence that autocorrelation 

issues are rejected since the null of no first order autocorrelation cannot be rejected at usual 

confidence thresholds.  

Wooldridge test for autocorrelation in panel data, H0: no first order autocorrelation: 

F(  1,     118) =      1.516 

Prob > F =      0.2207 

 

For robustness checks, we also computed Driscoll and Kraay (1998) estimator, in Table 1, 

based on a nonparametric covariance matrix estimator leading to heteroscedasticity consistent 

standard errors robust to different forms of temporal and country/spatial dependence. The 

results obtained with Driscoll-Kraay standard errors, including 4 lags of the dependant 

variable, are very similar to the results from the table 2 of our article using standards errors 

clustering.  

Table 1:  Driscoll-Kraay standard erros 

Regression with Driscoll-Kraay 
standard errors  

Number of obs = 1150 
 

Method: Fixed-effects regression 
 

Number of groups = 118 
 

Group variable (i): code_country 
 

F( 9, 9) = 18545,34 
 

maximum lag: 4 
 

Prob > F = 0 
 

  
within R-squared = 0,1086 

 

  
Drisc/Kraay 

    
dfrst (stand.) Coef. Std. Err. t P>t [95% Conf. Interval] 

GDP per capita, WPT (log, 2005 constt, -

1) (standardized) 
0,8263787 0,1047447 7,89 0 0,5894297 1,063328 

GDP pc growth (2005 constt) 

(standardized) 
0,0305868 0,0097437 3,14 0,012 0,0085449 0,0526286 

Population density (log) (standardized)  1,314519 0,3472077 3,79 0,004 0,5290809 2,099957 

Agricultural land (% country area, -1) 

(standardized)   
0,0355032 0,0793008 0,45 0,665 -0,1438877 0,2148941 

Openness at 2005 constant prices (\%, -1) 

(standardized)  
0,1204355 0,0266905 4,51 0,001 0,0600573 0,1808136 

Terms of trade (standardized) -0,1068865 0,0186983 -5,72 0 -0,1491851 -0,0645879 

Crop production index (2004-2006 = 100, 

-1) (standardized) 
0,0489579 0,0129047 3,79 0,004 0,0197655 0,0781503 

PolityII (standardized) -0,0029091 0,0151374 -0,19 0,852 -0,0371524 0,0313341 

Durable (standardized) 0,0151867 0,0188629 0,81 0,442 -0,0274842 0,0578575 

_cons 0,2255345 0,0278517 8,1 0 0,1625296 0,2885394 

 

B. Multicolinearity issues 

In this subsection, we deal with potential collinearity issues and the risk for artefactual 

explanation of variations of the dependent variable in estimations using interaction terms. By 

definition, interaction model requires collinearity among explanatory variables. We focus on 



the collinearity among variables "Agricultural exports (value) per km2 (log, -1) 

(standardized)" and "Agricultural land (-1) x Agricultural exports (log, -1)") 

Althauser (1971) shows that the main terms and the interaction terms are correlated. These 

correlations are affected in part by the size and the difference in the sample means of both 

(interaction) variables. Smith and Sasaki (1979) also argue that the inclusion of the interaction 

term might cause a multicollinearity problem. According to Balli and Sorensen (2013), 

collinearity is not a problem for regressions with interaction effects of a different nature than 

elsewhere in empirical economics; if one expects too much from a small sample, correlations 

between regressors make for fragile inference. 

To check collinearity issues, we compute the Variance Inflation Factors (VIF). Based on the 

model 2 in the manuscript, we thus show that the VIF computations lead to the following 

results. 

- first, it seems that the (potentially artefactual) variance of the dependent variables explained 

is limited by such collinearity according to the variation inflation factor criterium (average 

vif: 2.46). We indeed find that the variance inflation factor (VIF) is always lower than 10 (a 

usual ad-hoc upper bound in econometric studies), indicating moderate collinearity among 

explanatory variables (although it is relatively high for interaction and interacted variables).  

 

Table 2: VIF results 

 

Variables of model                                           VIF  1/VIF  

  

Agricultural exports km2 x Agricultural land   6.97  0.143512 

Agricultural exports (value) per km2 (log, -1) (standardized) 5.15  0.194281 

Agricultural land (% country area, -1) (standardized)  3.29  0.304000 

Population density (log) (standardized)    1.91  0.522544 

GDP per capita, WPT (log, 2005 constt, -1) (standardized)  1.31  0.764656 

Openness at 2005 constant prices (%, -1) (standardized)  1.30  0.769774 

Terms of trade (standardized)     1.28  0.781977 

Forests exports (value) per km2 (log, -1) (standardized)  1.22  0.820911 

Crop production index (2004-2006 = 100, -1) (standardized) 1.13  0.886870 

GDP pc growth (2005 constt) (standardized)   1.04  0.958278 

 

Mean VIF         2.46 

  

   

- second, coefficients found are relatively stable and the r-squared does not increase 

significantly across regressions, showing the limited impact of new interaction variables on 

the explained variance of the explained variable. See the following table (Table 4 in the 

paper): 



 

C. Forest cover proxy 

Regarding the remaining issue of the limited quality proxy that we use for forest endowments 

(agricultural land), we have now backed up our results by showing the same regressions with 

the forest cover in t-1 (now collinear with the endogenous variable). We thus introduced an 

additional variable: the forest cover in year t-1 (km2, lagged). We then ran the same 

regression and found similar results (additional regression shown in column 3 of Table 4 of 

the paper). 

 

D. Dynamic Panel estimation models 

In the paper, we focus on usual panel regression methods such as fixed effects regressions 

since all diagnostics tests are in favor of this methodology. 

 

In this Appendix, we check the robustness of the fixed effect model by performing a dynamic 

panel estimation using GMM estimator. Under GMM, our static panel model turns out to be a 

dynamic panel data model variables and leads to the rejection of the fundamental hypothesis 

of strict exogeneity of the covariates. As a consequence, the usual estimator computed in the 

previous static model (estimation by LSDV) is no longer consistent when N tends to infinity 

with fixed T (the so-called dynamic panel bias, see Nickell, 1981).  



 

Though an IV estimator is a way to estimate this kind of model, Arellano and al. (1991) have 

shown that the GMM estimator is the most suitable since it uses more information from the 

model. From a technical point of view, the GMM approach is based on the first difference of 

the model (yi,t-yi,t-1) to remove the fixed effects Ci; the parameters of the models are computed 

using the moments (theoretical and empirical) of the model (see for instance Greene, 2011, 

7th). The main advantage of the GMM is that we do not need to impose a strong hypothesis 

such as strong exogeneity before the estimation, as in the OLS and Maximum Likelihood 

cases. It thus produces robust and efficient estimates of our dynamic model of the 

deforestation rate. However, we show that this dynamic estimation is not needed since lags of 

the dependent variable do not significantly influence the current deforestation rate, as shown 

in Table 2 of the paper, unit root is negligible and not significantly different from 0. 

 
E. Non-stationarity issues 

To check non-stationarity issues, we perform usual panel unit root tests to investigate the 

dynamics of our series. First, we test for the presence of a unit root in our series. Panel unit 

root tests proposed by Levin, Lin and Chu (2002), Im, Pesaran and Shin (2003) and the Fisher-



type ADF test (Maddala and Wu, 1999) are the most used tests in panel studies. The literature 

has shown that Maddala and Wu (1999) exhibit the best properties.  

However, the so-called first generation unit root tests (they assume cross sectional 

independence) are shown to be inconsistent in the presence of cross sectional dependence, 

because they suffer from severe size distortions (O’Connel (1998), Philips and Sul (2003), 

Banerjee et al. (2005)). In this case, the drivers of the deforesting countries are likely to be 

pair-wise correlated. We thus reinvestigate the unit root testing taking into account common 

factors using so-called second generation PURT from Pesaran (2007) named CIPS.  

Finally, since usual tests are not well suitable to panel datasets with a large number of panel 

countries and relatively few time periods (here, we have 128 countries and 12 time periods), 

we use the Harris-Tzavalis (1999) test. 

We find clear-cut evidence in favor of the alternative hypothesis that the deforestation rate is 

stationary. For comparison purposes, we also test population density and openness. The 

overall results show that cointegration and dynamic panel estimators are not required to 

estimate the drivers of deforestation considering our panel data set since all main variables are 

stationary.  

Table 3: Panel Unit Root tests for main variables 

PURT 
Deforestation 

rate 
Openess 

Population 

Density 

Levin Lin Chu 
-7.2924        

(0.0000) 

-69.1457        

(0.0000) 

-18.4251        

(0.0000) 

Im Pesaran 

Shin 
na 

-2.9565        

(0.0016) 

-0.1900        

(0.4247) 

Fisher-

Maddala (ADF) 

1022.467    

(0.000) 
na na 

Specification Constant Constant Constant 

CIPS Pesaran 

(Second 

generation) 

1 to 4 lags 

included 

-15.055     

(0.000) 

-4.359     (0.000) 

0.463 

(0.678) 

44.840  

(1.000) 

na na 

Harris Tzavalis 
-27.2306       

(0.0000) 

-3.2129       

(0.0007) 

10.3825       

(1.0000) 



 Note: AIC selection is used to perform first panel generation tests. Na denotes unavailable 

results due to computational problems (insufficient number of observations or time 

dimension). P values are in parenthesis.  

 

F. Test Hausman fixed versus Random effect model 

 

Since non stationarity issues are not present in our panel data set, fixed effects and Random 

Effects estimator could be used. However, we need to choose between those two estimators 

and thus we performed the Hausman Fixed versus Random effect test. If the p-value for the 

Hausman test, where you compare random to fixed-effects is inferior to .05 then the random-

effects estimator is not consistent. The fixed-effects estimator is consistent; however, the 

random-effects estimator is more efficient. The statistic, denoted m, is distributed as a Chi2 

under the null hypothesis with degrees of freedom corresponding to the dimension of b 

(parameters). Null hypothesis is that the first estimator is efficient but inconsistent under the 

alternative while the second estimator is consistent under both hypotheses. Our results (see 

below) are in favor of the FE estimator.  

Table 4: Hausman test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

---- Coefficients ----

(b)          (B)            (b-B)     sqrt(diag(V_b-V_B))

fixed        random       Difference          S.E.

1.082204     .6348849        .4473189        .1370821

.0308029     .0254869        .0053161        .0031426

1.689799     .0494463        1.640352        .4648295

.0889401     .1652672        -.076327        .0257418

Terms of trade (standardized) -.1078828    -.0654791       -.0424037        .0113007

.08953    -.1023128        .1918428        .1939351

.0721343     .1133331       -.0411988        .0110425

.2310043     .2761423        -.045138        .0549796

-.0990735    -.0803701       -.0187035        .0493948

b = consistent under Ho and Ha; obtained from xtreg

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test:  Ho: difference in coefficients not systematic

chi2(9) = (b-B)'[(V_b-V_B)^(-1)](b-B)

31.7

Prob>chi2 =      0.0002

(V_b-V_B is not positive definite)

GDP per capita, WPT (log, 
2005 constt, -1) 
(standardized)

GDP pc growth (2005 constt) 
(standardized)

Population density (log) 
(standardized)

Openness at 2005 constant 
prices (\%, -1) (standardized)

Agricultural land (\% country 
area, -1) (standardized)

Crop production index 
(2004-2006 = 100, -1) 
(standardized)

Agricultural exports (value) 
per km2 (log, -1) 
(standardized)

Forest land cover (log, -1) 
(standardized)
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