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Abstract Collaborative Management Partnerships (CMPs) between state wildlife authorities

and non-profit conservation organizations to manage protected areas (PAs) have been used

increasingly across Sub-Saharan Africa since the 2000s. They aim to attract funding, build

capacity, and increase the environmental effectiveness of PAs. Our study documents the rise of

CMPs, examines their current extent and measures their effectiveness in protecting habitats.

We combine statistical matching and Before-After-Control-Intervention regressions to quantify

the impact of CMPs, using tree cover loss as a proxy. We identify 127 CMPs located in 16

countries. CMPs are more often located in remote PAs, with habitats that are least threatened

by human activity. Our results indicate that, on average, each year in a CMP results in an

annual decrease in tree cover loss of about 55% compared to PAs without CMPs. Where initial

anthropogenic pressure was low, we measure no effect. Where it was high, we see a 66% decrease

in tree cover loss. This highly heterogeneous effect illustrates the importance of moving beyond

average effect size when assessing conservation interventions, as well as the need for policy

makers to invest public funds to protect the areas the most at risk.

Significance Statement Protected areas (PAs) are vital for nature conservation but in Sub-

Saharan Africa, they often fall short due to funding, management, and institutional challenges.

Since the early 2000s, Collaborative Management Partnerships (CMPs) have emerged to tackle

these issues. We provide the most complete and recent census of CMPs, document their location

and provide a robust statistical analysis of their causal effect on tree cover loss over two decades.

As of the end of 2023, our work identified 127 CMPs across 16 countries. However, CMPs are

more often created in remote areas that faced low anthropogenic pressures initially. On average,

our counterfactual analysis reveals that tree cover loss was 55% lower between 2001 and 2023

in CMP-managed PAs compared to similar PAs without CMPs. While there was no effect of

CMPs in remote areas, the effect was largest in high pressure environments.
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1 Introduction

Protected areas (PAs) are central policy instruments to conserve natural habitats, biodiversity

and carbon sinks [1–3]. However, their effectiveness at protecting ecosystems is highly variable

[4–6], and challenged by the structural lack of funding [7, 8], limited management capacities [9],

weak institutions and governance [10, 11].1 In Sub-Saharan Africa, the home of 13% of global

species richness and about 20% of global forest cover, the environmental performance of PAs

has been limited [18–20].

Collaborative management partnerships (CMPs) between government bodies and non-

profit organizations have emerged as a solution to increase funding and management capacities

of existing PAs [21–24]. Three broad categories of CMPs can be distinguished along a spectrum

of increased sharing and delegation of authority from governments to non-governmental orga-

nizations (NGOs): financial-technical support, co-management, and delegated management

Baghai et al. [25]. In financial-technical arrangements (FT), NGOs provide financial support

and technical advice without having a formal long-term role in governance or management de-

cision making. FT arrangements have predominated across Sub-Saharan Africa from the 1960s

to the 2000s Struhsaker et al. [26] Co-management and delegated management arrangements,

which started in the late 1990s, grew significantly since the mid-2000s. They include a shar-

ing of management and, often, governance of the PA between the NGO and the Government

Fitzgerald [24]. The median funding for PAs with co-management is 2.6 times higher than

baseline State budgets. This number grows to 14.6 for delegated management arrangements

[23]. However, though CMPs appear to have positively contributed to biodiversity conservation

outcomes [27], there is a dearth of hard data to demonstrate their additionality [28–30].

Here, we provide a quantitative evaluation of whether CMPs increase the effectiveness of

PAs at conserving habitats, as proxied by satellite-measured tree cover loss [31], across all of

Sub-Saharan Africa between 2001 and 2023. We specifically focus on the types of arrangement

that delve the furthest in terms of cooperation and delegation, and that are growing the fastest:

co-management and delegated CMPs.

Building on previous efforts Baghai et al. [21] and Fitzgerald [24], we first map all existing

CMPs across Sub-Saharan Africa. Our work notably includes Madagascar for the first time in

this literature - a biodiversity hotspot that is home to 50% of the co-management and delegated
1Other factors influencing the effectiveness of PAs include the level of economic development in nearby

villages [12], their locations [13], the type of PAs [14], spillovers [15], the occurrence of crisis such as Covid-19

[16] and the presence or lack of human settlement [17]
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CMPs on the continent. Second, we use counterfactual statistical models to quantify the causal

effect of establishing CMPs on the protection of natural habitats in terrestrial PAs. Because

CMPs were conceived to primarily reinforce the management of existing PAs, and not to create

new PAs, our empirical strategy compares the evolution of tree cover loss between PAs with

and without CMPs. These PAs without CMPs, which we include in the control group, may

receive some FT support from donors and NGOs. However, their management remains fully

under the responsibility of Governments.

Understanding whether CMPs are effective at better protecting natural habitats - a nec-

essary condition to halt the collapse of biodiversity [32] - is a central question to orient con-

servation planning in low-income countries, including across the African continent [33]. As

governments, NGOs, and donors are considering renewing existing agreements and signing new

ones, there is a growing necessity to understand the conservation benefits of these arrange-

ments [27]. Beyond the nature-conservation sphere, our results contribute to understanding

the effect of Public-Private Partnerships more broadly, which is especially relevant given their

proliferation since the 1980s in low- and middle-income countries Fabre & Straub [34].

2 Results

2.1 Collaborative Management Partnerships across Africa

We first document the evolution of the spatial distribution of co-management and delegation

agreements, from their beginning to the end of 2023 (Figure 1A).

The first co-management arrangement documented in our database, Kasanka National

Park (NP) in Zambia, was established in 1990 between the Department of National Parks and

Wildlife Service and a British-registered NGO, Kasanka Trust. The early 2000s saw further

growth of CMPs with the establishment of agreements in Mozambique (Cabo de São Sebastião

in 2000), Tanzania (Grumeti and Ikogorongo Game Reserves in 2002), Malawi (Mejete Wildlife

Reserve in 2003), and the Democratic Republic of the Congo (the Garamba landscape in 2005,

comprising a NP and three hunting reserves). The number of CMPs continued to increase

steadily, reaching 25 PAs with CMPs in 2014.

In 2015, 64 new CMPs were established. Sixty-three of them were located in Madagascar

where CMPs facilitated the establishment of new PAs. This contrasts with the rest of the

continent where CMPs contributed to the reinforcement of existing PAs.

By of the end of 2023, 127 PAs located in 16 Sub-Saharan African countries were under a
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Figure 1: Collaborative Management Partnerships (CMP) for Protected Areas (PA) across time and

space. (A): Temporal evolution of PAs with CMPs. Left: Share of PAs with CMP among all the

PAs from the same 16 countries that have a similar designation. Center: Percentage of area of PAs

with CMPs compared to the area of all PAs in the same 16 countries that have a similar designa-

tion. Right: Share of countries with PAs with CMPs among the 16 countries that have CMPs by the

end of 2023. (B): Spatial distribution of current PAs with CMPs and possible control PAs. PAs with

CMPs in Sub-Saharan Africa are color coded in yellow to purple based on the year of establishment

of the CMPs. PAs without CMPs, that have the same designation of the ones with CMPs and lo-

cated in the same 16 countries, are represented in gray.
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co-management or delegated CMP model (Figure 1B and Table S1). Out of these, 5 CMPs were

in Marine PAs and 122 in terrestrial PAs. The 122 terrestrial PAs with CMPs represent 5% of

all similarly-designated PAs within these 16 countries and 35% of the area under protection.

This surface represents 979,387 km2.

All but one PA with a CMP were initially managed by national authorities. Most were

designated as NPs of IUCN category I or II. Only one of the PAs with CMP is registered as a

community reserve (Lac Télé in the Republic of Congo).

Forty-eight partner organizations participate in co- and delegated management agreements.

Forty-six of them are not-for-profit organizations. Two are for-profit organizations and both

operate in Madagascar.

Of the 48 partner organizations, 27 international NGOs manage 96 CMPs, and 21 national

organizations manage 31 CMPs. The African Parks Network, for which CMPs are their raison

d’être, has the largest portfolio with 26 CMPs. Other international conservation NGOs, such

as the Wildlife Conservation Society (19 CMPs), not only manage PAs through CMPs in these

16 countries, but also provide FT support and manage integrated conservation and develop-

ment programs in other countries. CMPs run by national organizations are mostly found in

Madagascar.

2.2 Differences in location between PAs with and without Collaborative

Management Agreements

First, we compare countries that have CMPs with those who do not. Co-management and

delegated CMPs are found in 16 out of 48 countries in Sub-Saharan Africa: Angola (1 CMP),

Benin (3), the Central African Republic (6), the Democratic Republic of Congo (11), the

Republic of Congo (5), Madagascar (63), Mozambique (9), Malawi (4), Niger (1), Nigeria

(1), Rwanda (2), South Sudan (5), Chad (6), Tanzania (2), Zambia (6) and Zimbabwe (2).

These CMPs are predominantly located in central Africa and parts of southern and east Africa.

However, few CMPs are established in West Africa and several countries that are prominent for

biodiversity conservation don’t have any co-management or delegated CMPs, including some

where FT support has long been implemented. This applies to Cameroon, Kenya, South Africa,

and to a lesser extent Tanzania and Namibia which only host three CMPs in total.

In Figure S1, we show that CMPs are located in countries with a lower GDP per capita

than countries without CMPs ($1,481 vs $3,789, p − value = 0.007). Furthermore, CMPs are

located in countries with a lower basic state function score (Figure S1) than countries without
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CMPs - a variable that measures the ability of states to keep a monopoly on the use of force

and to provide basic public services [35]. This difference is, however, not statistically significant

(5.5 vs 6.25 on a 1 to 10 scale (most functioning), p − value = 0.25).

Second, we focus on the 16 countries that have CMPs and explore the differences between

PAs with and without CMPs. Within these countries, we identify 2,572 PAs without CMPs that

share a common designation status with the PAs with CMPs. PAs with CMPs are, on average,

significantly larger than those without CMPs (5,539 km2 vs 515 km2, p − value < 0.001,

Table S2). This difference is partly explained by the presence of some particularly big PAs

among those with CMPs (e.g., Termit et Tin-Toumma in Niger and Ouadi Rimé-Ouadi Achim

in Chad have an area of over 90,000 km2 and 80,000 km2 respectively).

Still within these 16 countries, we divide PAs into a regular grid of 0.05 x 0.05 degrees

(approximately 5 x 5 km, Methods 4) and compare the ecological characteristics and the initial

anthropogenic pressures between gridcells from PAs with CMPs and gridcells from PAs without

CMPs (gray triangles in Figure 2 and Tables S3). Gridcells from PAs with CMPs are more

likely to be tropical and subtropical moist broadleaf forests, while grasslands and savannas are

underrepresented in CMPs. Regarding anthropogenic pressures, gridcells belonging to PAs with

CMPs are on average significantly further away from cities and villages and have less initial

population than those without CMPs. This suggests that PAs with CMPs are located in areas

that face, on average, less anthropogenic pressure than other PAs. This is coherent with the fact

that in 2000, gridcells from PAs with CMPs had a larger forest cover and less croplands than

those without CMPs. These results suggest that the selection of CMPs is subject to location

bias.

2.3 Impact of Collaborative Management Agreements on tree cover loss

Finally, we use our gridcell database to analyze whether the establishment of CMPs decreased

annual tree cover loss measured through satellite images between 2001 and 2023 [31].

We proceed in two steps to quantify possibly causal impacts of CMPs. First, we correct

the location bias using statistical matching. We find an appropriate match for 62% of gridcells

with CMPs (Table S4). Nevertheless, no match could be found for gridcells from 15 PAs with

CMPs (Figure S2). After matching, no difference in observable characteristics remains between

gridcells in PAs with and without CMPs based on commonly used thresholds of similarities [36]

(Figure 2, green circles and Table S4). Second, we estimate a Before-After-Control-Intervention

event-study model, allowing for staggered entry in the treatment, heterogeneous treatment
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Figure 2: Differences in observable characteristics between gridcells from PAs with CMPs and grid-

cells from PAs without CMPs. In this figure, data comes from the final database used for the im-

pact evaluation. Starting from the original database, we dropped cells that had no pixel of initial

tree cover (using a 25% tree cover threshold), PAs with an area smaller than 25 km2 (correspond-

ing to the area of a gridcell in the impact evaluation), and control PAs that had a different desig-

nation status from PAs with CMPs. The final database contains 94 PAs with CMP and 991 PAs

without CMPs - corresponding to 19,707 gridcells before matching. After matching, 7,224 gridcells

were kept.
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effects, and country and biome specific time dynamics [37]. Our main specification uses the

percentage of tree cover loss as a dependent variable. We construct it by dividing, for each

year t between 2001 and 2023, the number of hectares of tree cover loss during year t by the

number of hectares of tree cover at the beginning of year t. Baseline results are displayed in

Panel A of Figure 3, where we compare the difference in tree cover loss between treated and

control gridcells, both before and after the creation of CMPs.

In the ten years before the establishment of CMPs, the difference in tree cover loss is small.

However, in four of the five years before the establishment of a CMP, tree cover loss is already

between 3 and 11 percentage points lower in gridcells that will become CMPs than in similar

gridcells that will not become CMPs.

After the establishment of CMPs, tree cover loss in PAs with CMPs becomes lower than

in matched gridcells from PAs without CMPs. The effect is gradual and increases with the

number of years spent under a CMP. In the first four years of implementation, the magnitude

of the difference in tree cover loss between gridcells with and without CMPs is similar to the

one that existed in the last few years prior the establishment of the CMP. After five years, this

difference in tree cover loss increases. Eventually, the point estimates become less accurate as

sample size decreases.

The size of the impact is notable. The aggregated average treatment effect (ATE) is - 0.14

percentage points each year In comparison, the average tree cover loss of the matched control

observations is -0.25 percentage points. Hence, each year spent under CMPs decreased tree

cover loss by 56% (Figure 3).

2.4 Heterogeneity

We explore how the effect of CMPs varies across different contexts. The previous section

highlighted the existence of a strong location bias of CMPs towards areas with an initial lower

anthropogenic pressure. We construct an index of anthropogenic pressures for each gridcell

using the covariates from the matching process. We then compare the effect of CMPs on tree

cover loss for gridcells below and above the median value of our of anthropogenic pressure

index.

Where anthropogenic pressure is low, so is tree cover loss. The average yearly tree cover

loss rate in control gridcells is 0.10 percentage points in low anthropogenic pressure areas. This

is over 50% lower than in all control PAs (0.25 percentage points). Consequently, the additional

effect of CMPs is null (Panel B in Figure 3 and Table S6).
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Figure 3: The formal establishment of a Collaborative Management Partnership (CMP) is followed

by a decrease in deforestation compared to similar Protected Areas without CMPs, notably in cells

with an high initial level of anthropogenic pressure. (A) Baseline estimate of the effect of CMP.

(B) Heterogeneity of the effect between cells facing initially low anthropogenic pressures (green) and

high anthropogenic pressures (purple). Dots represent the point estimate of the impact (difference

in the tree cover loss between treated and control units) for each year ranging from 10 years before

and after the establishment of a co-management or delegated agreement to 16 years after its estab-

lishment. Lines represent the 95% confidence interval of the estimates. The effects are detailed in

Table S5 (baseline results), Table S6 (low anthropogenic pressures areas) and Table S7 (high anthro-

pogenic pressures areas). The model is estimated using the procedure developed by de Chaisemartin

and d’Haultfœuille [37].
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Where anthropogenic pressure is high, so is tree cover loss. The average yearly tree cover

loss rate in control gridcells is 0.39 percentage points in high anthropogenic pressure areas.

This is three times higher than in low anthropogenic pressure areas, and 50% higher than in all

control PAs. In these highly pressured areas, CMPs decreased annual tree cover loss by 0.26

percentage points on average (Table S7). This corresponds to a 66% decrease in annual tree

cover loss.

The heterogeneity of the impact of CMPs for the individual variables that we use to

construct the anthropogenic index is explored in Figures S3 to S5. The effect of CMPs is

particularly strong in gridcells located at lower elevation, in those with lower tree cover in

2000, more croplands, higher population, closer to villages and cities, and in flatter areas.

2.5 Robustness

We present robustness checks for our baseline estimate. Event studies are displayed in Figures

S6 to S21.

First, we show that being two times stricter (caliper = 0.25SD) or two times more per-

missive (caliper = 1SD) in the selection of matched controlled gridcells does not change the

baseline results. When matching is stricter (Figure S6), the aggregated ATE (-0.394 ; 95% CI

= [-0.803;0.016]) becomes larger relatively to the tree cover loss in controlled gridcells (0.18

percentage point). When our matching is more permissive (Figure S7), the aggregated ATE

(-0.1 ; 95% CI = [-0.202;0.002]) becomes relatively smaller. We also show that results are robust

when conducting matching with replacement, meaning that a same gridcell can be the control

gridcell for several treated ones (Figure S8), when forcing pairs to belong to the same country

(Figure S9), when dropping trends from the BACI regression (Figure S10), when calculating

annual tree cover loss rate using the year 2000 as a reference instead of a rolling rate (Fig-

ure S11), and when weighting gridcells by the areas of the PAs (Figure S12). In this last case,

deforestation before the establishment of CMPs is quite different in controled and future-treated

observations, which complicates the causal interpretation of the results.

Madagascar CMPs in Madagascar were used to expand the network of PAs and not to

strengthen existing PAs. Because of the singularity of this context, the effect of CMPs in

Madagascar can differ from the rest of the continent, and taking PAs as controls might be

less appropriate. We estimate our baseline model by dropping observations from Madagascar

(Figure S13). The results become relatively larger (-0.146 ; 95% CI = [-0.285;-0.006], Mean

untreated = 0.161).
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Alternative estimator We re-estimate our baseline model using the econometric approach

developed by Sun and Abraham [38] which is conceptually similar to the method of de Chaise-

martin and d’Haultfœuille [37] mobilized in our paper. The results obtained with this alterna-

tive estimator are extremely close to those from our baseline estimate (ATT = -0.17 (95% CI

= [-0.315;-0.024], Mean untreated = 0.253, Figure S14).

Alternative grid size In spatial analysis, the choice of the geographic unit, which is often

arbitrary, can impact the results [39]. We test the robustness of our findings using a coarser

spatial grid (10 km x 10 km). We are able to construct a control group that is extremely similar

to treated observations (Figure S15). The effect size from the post-matching BACI regression is

significant, and larger than with our main grid (-100% of tree cover loss on average). Estimates

are, however, less precisely estimated (Figure S16).

In addition, we assess the robustness of the results by using a finer grid of 2.5 x 2.5 km.

Here too, we are able to construct a convincing control group (Figure S17). We also find that

CMPs are associated with lower tree cover loss (Figure S18). However, the pre-trends are now

entirely convincing in this analysis, likely because, at this spatial scale, 40% of cells experienced

no deforestation over two decades - making an Ordinary Least Square model less suitable for

these data.

Spatial auto-correlation Our main estimate accounts for spatial auto-correlation by sampling

1/3 of grid cells. As a robustness test, we use all available grid cells instead of sampling them,

and adjust standard errors by clustering them at different spatial resolution: a 50 x 50 km grid

(Figure S19), a 100 x 100 km grid (Figure S20) and at the park level (Figure S21). A 50 x 50

km grid provides smaller standard errors than our main model, hence increasing the statistical

significance of the results. A 100 x 100 km grid provides standard errors that are comparable

to the ones from the main estimate, which leave the results unchanged. Finally, clustering the

standard errors at the park level leads to a decrease in the precision of the standard errors

during the latest years of the treatment for which we have a small number of clusters. The

aggregated impact becomes significant only at a 10% level.

3 Discussion

PAs, a cornerstone instrument of conservation policies, can deliver important environmental

outcomes [6, 40]. However, their ability to do so in under-resourced, highly threatened areas
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of Sub-Saharan Africa is often limited [16, 17]. CMPs are ambitious approaches to inverse the

dynamic of habitat destruction in African PAs. Their number has been increasing rapidly and

they are attracting important funding. Our results show that these CMPs have delivered a

large decrease in tree cover loss (56% per year on average).

Our results show that tree cover loss starts to decrease in the four years preceding the

creation of CMPs. Although the magnitude of this decrease is small, it is statistically significant.

The presence of some anticipation effect is a likely interpretation of this result. Indeed, the

formal establishment of a CMP is the end-result of a process that takes several years. The

CMP toolkit, coordinated by the World Bank [24], presents nine detailed case studies in which

the CMPs took between 1 and 4 years to be finalized. As a consequence, the decrease in tree

cover loss that we observe in the years prior to the official CMP creation date could reflect that

some activities already started in the PAs prior to the official establishment of the CMP.

Furthermore, the literature has for long established that PAs are often located in areas

that are more remote than unprotected areas [13]. In these remote areas, pressures on habitats

are generally low and the presence of PAs does not result in better protection [5]. Our results

highlight that gridcells with CMPs are subject to an even stronger location bias, as CMPs

tend to be primarily established among the most remote PAs. Some of the CMPs are even

too remote for us to be able to pair them with similar PAs without CMPs despite considering

a large pool of over 1,000 control PAs. Indeed, while the average gridcell of a control PA is

located 12 hours away from the closest city of more than 500,000 inhabitants, several gridcells

within Salonga, Lomami and Chinko NP (three CMPs in the D.R. Congo and the Central

African Republic) are located as far as 46 hours away. Similarly, the average control gridcell

is located 5 hours from the nearest village of 5,000 or more inhabitants while several parts of

Lomami and Maiko NP are located over 12 hours from such a village. As a consequence, we

show that the establishment of CMPs that faced below-median anthropogenic pressure but for

which we were still able to find a correct match, led to a precisely estimated null effect on tree

cover loss.

Not all CMPs are located in remote areas. Virunga NP in the Democratic Republic of

Congo is a good illustration, as over five million people live directly around the NP. The travel

time between some gridcells of Virunga NP and the city of Goma (one of the fastest growing

cities on the continent with already over 1.5 million inhabitants) is 10 minutes. Likewise, some

gridcells from Kahuzi-Biega NP, also in the Democratic Republic of Congo, are located 42 min

away from the large city of Bukavu.

While protecting PAs that face high anthropogenic pressure is challenging, our results
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highlight that CMPs have a positive and large effect on habitat conservation specifically in

the gridcells that faced above-median anthropogenic pressure. This suggests that the positive

impact of CMPs may even become greater if NGOs are willing to take on the management of

these tough contexts - and get donors to understand the higher associated risk of not succeeding.

More generally, our results highlight that the average effect of conservation policies can hide

large heterogeneity, making the average a poorly informative indicator for policy makers.

In addition, our results illustrate that it can take several years before conservation policies

turn into large measurable effects. In our study, the effect of CMPs was limited over the first five

years of their establishment. This effect slowly increased from years 6 to 10 and increased even

after 10 years. This result raises two important points. First, it is key that wildlife authorities

engage in long-term partnerships. Second, long-term rather than short-term evaluations are

crucial to assess accurately the effect of conservation policies.

We do not mean to present CMPs as being the only policy option or as being uniformly

effective. Examples of CMPs that do not appear to be delivering effective management exist

[23]. These appear to be due to a combination of poorly-designed partnership agreements and

lack of proficiency on the part of the NGO and wildlife authorities [25]. Thus, it is important for

governments to select partners wisely and to monitor outputs such that steps can be taken in

the event of non-performance. Furthermore, the importance and effectiveness of management

of natural habitats by local communities and indigenous peoples is well evidenced [41]. We do

not see CMPs as an alternative, but rather as a complement, to community involvement. This

can take the form of community conservancies where legislation recognizes community land

rights.

Our research opens lines for further work. While our paper analyzes the effect of CMPs

on habitat conservation, PAs actually face a confluence of threats going beyond deforestation,

such as wild meat hunting and high value poaching [42–45]. Due to the large demand for

bushmeat across the continent and the high value of the commodity, it is likely that the threat

from poaching is insidious and more difficult to control than that of deforestation. Thus, while

well-financed and well-managed CMPs could effectively limit both deforestation and bushmeat

poaching, less well-managed and financed CMPs may deliver on limiting deforestation without

effectively controlling bushmeat poaching. More research into the impact of CMPs on poaching

and other threats is therefore needed. It would also be important to study the effect of CMPs

on species abundance and diversity [46, 47], and on the ability to safeguard critical ecosystem

services.

Finally, it would be interesting to analyze whether the encouraging outcomes of CMPs
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in terms of habitat protection are achieved in synergy with or at the expense of local socio-

economic development. Under-financed and under-staffed PAs can be either an opportunity or

a burden for local communities [48]. Some community members may benefit from conducting

unsustainable activities within PAs that are vital for their subsistence [49] and enforcing laws

may negatively impact these households [50]. Furthermore, under-financed and under-staffed

PAs are also prone to larger-scale natural resource trafficking, sometimes coordinated by armed

groups [51], which has direct negative effects on local communities. Many CMPs have invested

in supporting alternative livelihoods, developing social infrastructure, and promoting tourism

and security, which can have important knock-on effects for local economies [23]. A critical issue

is whether CMPs or state-run models generate greater resources for engaging and benefiting

communities. So far, this question has mostly been explored through measuring attitudes and

perceptions, with mixed results [52–54]. A recent paper provides a quantitative assessment

using satellite-derived measures of poverty for the CMP of one organization, African Parks

Network [30]. Further research is required to better understand the cost-benefit of CMPs on

the well-being of local communities and on on macroeconomic outcomes [55].

4 Materials and methods

4.1 CMP database

We built on previous analyzes to create an updated database of PAs with CMP management

Baghai et al. [21], Fitzgerald [24], and Brugiere [56]. We categorized PAs as falling under a

‘CMP’ when they are jointly managed by a State authority and a private partner, or when their

management has been exclusively delegated to a private partner by legal mandate. Following

Fitzgerald Fitzgerald [24], we did not consider PAs that receive only a Financial or Technical

(FT) support from a private partner as a CMP. This is because FT support represents a more

heterogeneous set of approaches, and it is hard to distinguish different levels of FT support

between PAs. Most PAs in our database previously received FT support prior the establishment

of a co-managed or delegated CMP.

We updated existing lists using expert knowledge to have an exhaustive list of CMPs as

of December 2023. This update fills an important gap in terms of spatial coverage, notably

for Madagascar that was absent or under-reported in previous assessments. We geo-referenced

our database of CMPs using primarily the World Database of Protected Areas [57] (version:

April 2024). When PAs with CMPs were missing in the WDPA or when their shapefiles were
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imprecise, we used shapefiles provided by local or national authorities. This was the case of

Chinko in Central African Republic, Gorongosa NP in Mozambique and all PAs in Madagascar

for which the precision of shapefiles in the WDPA is debated Andrianambinina et al. [58] and

Eklund et al. [59]. Our final database results in 127 PAs with CMPs. For each of them,

we determined the year of establishment of the first agreement. The database is available in

Table S1and in an open repository in a tabular format (linked to be provided when published).

4.2 Impact evaluation

We quantified the environmental impact of CMPs by examining changes in tree cover loss over

23 years compared to a control group comprising similar PAs but without CMPs. Tree cover

loss is measured annually from 2000 to 2023 using version 1.11 of the Hansen Hansen et al.

[31] dataset. A 30m x 30m pixel is defined as ‘lost’ in Hansen when at least 50% of its initial

tree cover is lost. Given Hansen’s limitations in accurately capturing data in arid regions, we

concentrated on pixels that had a minimum canopy cover of 25% in the year 2000. We tested

the robustness of the estimates when using a more conservative threshold of 50% of canopy

cover.

4.2.1 Inclusion criteria for CMPs in the impact evaluation Out of the 127 PAs with CMPs,

we excluded from the impact evaluation (a) five PAs that are primarily classified as marine

PAs in the WDPA because tree cover loss is not a relevant criteria, (b) two PAs for which a

CMP was signed before or in 2000 in order to keep only PAs for which we have tree cover loss

observations before and after the intervention, (c) 17 PAs that have an area below 25 km2 (all

in Madagascar, the size of our unit of observation), and (d) four PAs that had less than 1ha of

forest in 2000 using the 25% threshold.

4.2.2 Selection of possible control PAs Next, we constructed a control group of PAs without

CMPs. Using the WDPA and the Madagascar shapefile of PAs, we selected terrestrial PAs

without CMPs that are located in the same countries as PAs with CMPs, that are larger than

25 km2, that had more than one hectar of forest in 2000, and that have a similar designation

as PAs with CMPs (eg: National Park, Game Reserve, Hunting Reserve). We obtained a total

of 991 PAs that we consider as possible controls.

4.2.3 Grid PAs included in the study have heterogeneous areas (min = 26 km2, max =45,824

km2 sd = 6,310 km2, Table S2.To obtain observations that are comparable, we followed the
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literature and subdivided PAs into a regular grid [60]. Working at the cell and not a 30 x 30m

pixel helps limit non-classical measurement error which can be found in remote sensing data

for deforestation Alix-García & Millimet [61].

We created a grid of approximately 25 km2 over each PA (5 x 5 km). We clipped the grid

to the PA borders and kept pixels that are inside the PA. As a consequence, grid cells that are

bordering the PA delimitation can have an area smaller than 25 km2. To limit disparities in

terms of areas between grid cells, we combined adjacent gridcells that have an area smaller than

12.5 km2 ; and excluded cells that have an area smaller than 12.5 km2 and which could not be

combined with another adjacent cell. Finally, we randomly sampled 1/3 of these grids to limit

spatial auto-correlation Schleicher et al. [62]. We summarized this procedure in Figure S14.

Our final database contains 17,953 cells in which we follow deforestation annually between 2001

and 2023.

4.2.4 Outcome variable and covariates We measure tree cover loss using the Global Forest

Watch (GFW) data v1.10 [31]. The data are available on a yearly basis from 2001 to 2023

and are produced with a consistent methodology at a global level. We extracted tree cover

loss data for each grid cell using the gfcanalysis package in R [63]. We calculated the rolling

deforestation rate, i.e the annual share of tree cover that is lost, as our main outcome of interest.

The GFW data have been shown to under-report deforestation in certain contexts [61] and to

be less precise in areas with low tree cover densities [64]. It has the advantage of not being

specific to certain biomes (e.g., [65]).

We constructed a set of time-invariant covariates using other spatial data. For each cell, we

calculated the average elevation and slope using AWS Open Data Terrain Tiles Tiles [66] and

the elevatr R package Hollister et al. [67], the dominant biome Dinerstein et al. [68], population

in 2000 [69], travel time to the nearest village or town of 5,000 or more inhabitants and travel

time to the nearest city of 500,000 or more inhabitants Nelson et al. [70], and the earliest

estimate of the surface of croplands available for our study period, a composite image between

2000 and 2003 [71]. We also computed the Euclidean distance between the centroid of each cell

and the border of the PA, and the area of each PA. We extracted precipitation data using the

CHIRPS database [72] and calculated a yearly Standard Precipitation Index.

4.2.5 Statistical model In the absence of a true experimental framework, we combine pre-

matching techniques to ensure comparability between treated and comparison PAs at baseline,

along with panel regression analysis incorporating fixed effects. This methodology, which com-
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bines panel regression with pre-processing matching techniques, has been demonstrated to

approximate a true experiment more effectively [73, 74]. It has been employed in various prior

studies examining conservation policies (e.g., Neugarten et al. [60]).

We used statistical matching to correct for the possible difference in time-invariant observ-

able characteristics between PAs with and without CMPs. We implemented a nearest-neighbor

matching without replacement and using a mahalanobis distance in matchit Ho et al. [75]. We

set a caliper of 0.5 standard deviation to keep acceptable pairs. We matched on the following

variables: the initial forest cover in 2000, the Moran I statistic of forest cover in 2000, the

distance between the cell and the boarder of the PA, population in 2000 in the gridcell, the

distance between the gridcell and the nearest village, the distance between the gridcell and the

nearest large city, the surface of croplands in the gridcell in 2000-03, the average elevation and

average slope. We imposed that pairs of treated and control observations belong to the same

biome2, but not necessarily the same countries as forcing pairs to belong to the same country

would decrease by two the number of observations for which we can find an appropriate match

(Figure S9).

Second, we estimated the impact of CMPs on annual tree cover loss using a Difference-

in-Difference (DID) model, which are also known as Before-After-Control-Intervention (BACI)

[76], on the matched dataset. When more than two time periods are available, such as in our

case, DID models are usually estimated using a Two-Way Fixed Effects (TWFE) model. We

estimated non-normalized event study a model of the form:

Defi,t = αi + γt + ∑−2
k=−10 βk · CMP k

i,t + ∑16
k=0 βk · CMP k

i,t + ∑
c τ1 · Countryc × Y eart + ∑

b τ2 ·

Biomeb × Y eart + ϵi,t

Where Defi,t is the deforestation rate in gridcell i during year t, αi is a gridcell fixed-effect,

γt is a year fixed-effect, CMP k
i,t is an indicator for unit i being k periods away from initial

treatment at year t. The first summation captures the effect time periods leading up to the

treatment (placebo) and the second summation captures the time period following treatment

(effect). We included country-year and biome-year trends to capture more finely time-varying

unobserved factors.

Recent advances have demonstrated that TWFE can assign negative weights to obser-

vations when the treatment was staggered and that the treatment effect was heterogeneous
2Among: Tropical & Subtropical Moist Broadleaf Forests, Tropical & Subtropical Dry Broadleaf Forests,

Tropical & Subtropical Grasslands, Savannas & Shrublands, Flooded Grasslands & Savannas, Montane Grass-

lands & Shrublands, Deserts & Xeric Shrublands, Mangroves
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(e.g., varying through time, [77]). These negative weights lead to a biased estimates of the

average treatment effect of an intervention. In particular, the classic TWFE approach provides

contaminated estimates of time-dynamic effects De Chaisemartin & d’Haultfoeuille [37].

New methods were developed to correct negative weights and provide unbiased estimates

of average treatment effects. In particular, the approach of De Chaisemartin & d’Haultfoeuille

[37] consists of computing cohort-specific weights, and aggregates treated cohort × relative time

to treatment dummies into an unbiased Average Treatment Effect (ATE) for each period and

the entire post-treatment period. This approach relies on a weakened parallel trend assumption

compared to the canonical BACI model. We rely on their procedure and package to estimate

treatment effect [78]. We report non-normalized results. All coefficients are long-difference

compared to the outcome from one year prior to the establishment of CMP.

4.2.6 Heterogeneity We test the heterogeneity of the effect of CMPs depending on whether

the gridcell is exposed to low or high initial anthropogenic pressures. To that end, we con-

struct an index for anthropogenic pressure that add or subtract eight standardized continuous

variables:

Index = Population - travel time to the nearest city - travel time to the nearest village - initial

forest cover + initial cropland cover - slope - elevation - distance to the boarder of the PA

Next, we determine if a gridcell is above the median of the index in the matched dataset

(high anthropogenic pressure) or below this median (low anthropogenic pressure).

4.3 Data and codes

All analyses were conducted using R software (version 4.2.3) Data and codes are available on

https://zenodo.org/records/14195855.
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Figure S1: Boxplots of GDP per capita in 2000 (left) and basic state capacity score in 2005 (right)

for all Sub-Saharan Countries, depending on whether they had CMP during the study period or not.

For each sub-figure, we present the p-value of a t-test of equal mean. GDP per capita data come

from the Maddison Project Database. We took the GDP per capita for the year 2000, prior to the

creation of all but one CMP (Kasanka NP in 1990). Basic state function score data come from

the Bertelsmann Transformation Index project. It "indicates the extent to which the state has the

monopoly on the use of force and provides basic public services across the country. It ranges from

1 to 10 (most functioning)" and starts in 2005. As a consequence, we took the value of the score

in 2005. The size of each points is proportional to the number of countries having a given score

(among countries with and countries without CMP). Both datasets were downloaded from Our-

WorldinData.

27



Figure S2: Parks kept (dark color) and parks dropped (light color) during the matching procedure.

The matching was conducted at the grid level (5km x 5 km). The map was done with parks instead

of gridcells for visibility. A park was considered as kept for this figure if at least one of its gridcell

was matched.
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1.A. Heterogeneity of the impact of CMPs
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Figure S3: Heterogeneity of the effect of CMPs based on baseline characteristics: tree cover, Moran

I and Cropland (composite image between 2000 and 2003). For each dimension of heterogeneity, we

estimated the models on the sub-samples of observations that are below the median of the charac-

teristic (red), and above the median (blue). The impact of CMP on tree cover loss was stronger in

gridcells that initially had a lower forest cover and a lower Moran I (meaning, a higher variability in

the spatial composition of forest in 2000). Likewise, the effect of CMP was larger in gridcells with a

lower percentage of croplands in 2003.
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Figure S4: Heterogeneity of the effect of CMPs based on baseline characteristics: population, travel

time to the nearest city and travel time to the nearest village. For each dimension of heterogeneity,

we estimated the models on the sub-samples of observations that are below the median of the char-

acteristic (red), and above the median (blue). The impact of CMP on tree cover loss was stronger in

gridcells that initially had a higher population and that are closer from cities and villages.
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Figure S5: Heterogeneity of the effect of CMPs based on baseline characteristics: average elevation,

average slope and distance between a gridcell and the boarder of the PA. For each dimension of het-

erogeneity, we estimated the models on the sub-samples of observations that are below the median

of the characteristic (red), and above the median (blue). The impact of CMP on tree cover loss was

stronger in gridcells located at lower elevation and that are flat. The dynamic of deforestation in

gridcells close and far from the boarder of the park looks comparable.

32



1.B. Robustness of the impact of CMPs
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Figure S6: Robustness of the results when implementing a stricter matching than in the baseline

specification (caliper of 0.25SD instead of 0.5SD)
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Figure S7: Robustness of the results when implementing a more permissive matching than in the

baseline specification (caliper of 1SD instead of 0.5SD)
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Figure S8: Robustness of the results when implementing matching with replacement. This allows a

control observation to be selected as the "paired" control for several treated grid cells.

36



Figure S9: Robustness of the results when forcing pairs to belong to the same country in the match-

ing procedure. When doing that, the matching procedures only finds valid pairs for 33% of the

treated observations. This number was of 62% in the main estimate. We notably lose 25 treated PAs

out of 94 if we were to force the pairs to belong to the same country. As a consequence, the spa-

tial representativeness of this robustness result is more limited. Overall, the dynamic of the effect is

pretty to the main specification. However, estimates are less precise because of the fewer number of

observations - particularly when looking at long term impacts for which we have a small number of

PAs when forcing matches to belong to the same country.
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Figure S10: Robustness of the results when estimating the staggered DID model without biome- and

country-year trends.
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Figure S11: Robustness of the results when using deforestation rate with respect to the year 2000 as

an outcome variable (instead of calculating a rolling deforestation rate with respect of the tree cover

at the start of each year.
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Figure S12: Robustness of the results when weighting each gridcell by the inverse of the area of its

park. This gives each park (and not each gridcell) the same weight in the estimation of the effect.
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Figure S13: Robustness of the results when dropping observations from Madagascar.
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Figure S14: Robustness of the results when estimating the model with an alternative estimator and

packaged developed by Sun and Abraham (2021) instead of De Chaisemartin et al. (2024).
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Figure S15: Robustness of the results: covariate balance when using a 10 x 10 km grid. An appropri-

ate match was found for 834 out of 1586 treated cells (53% vs 62% in the main model with a 5 x 5

km grid).
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Figure S16: Robustness of the results when estimating the model on a 10 x 10 km grid.
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Figure S17: Robustness of the results: covariate balance when using a 2.5 x 2.5 km grid. An appro-

priate match was found for 14105 out of 20852 treated cells (67% vs 62% in the main model with a

5 x 5 km grid).
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Figure S18: Robustness of the results when estimating the model on a 2.5 x 2.5 km grid.
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Figure S19: Robustness of the results when clustering standard errors at a 1 degree grid. In this

sample, we did not sampled 1/3 grids but included them all.
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Figure S20: Robustness of the results when clustering standard errors at a 0.5 degree grid. In this

sample, we did not sampled 1/3 grids but included them all.
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Figure S21: Robustness of the results when clustering standard errors at the park level. In this sam-

ple, we did not sampled 1/3 grids but included them all.
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1.C. Illustration of the steps to construct our main units of observation

(gridcells)
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Figure S22: Illustraion of the four steps to create a grid for each park. A: we divide the PA into

a regular grid. B: We clip the grid to the contour of the PA and calculate the area of each cell. C:

Adjacent small cells are combined together to keep cells of comparable area. D: We sample 1/3 of

the cells.
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B Supplementary Tables

Table S1: List of co-managed and delegated Collaborative Management Part-

nerships

Country PA Year CMP Partner

AGO Iona National Park 2019 African Parks Network (APN)

BEN Boucle de la Pendjari 2017 African Parks Network (APN)

BEN Pendjari 2017 African Parks Network (APN)

BEN W (Benin) 2020 African Parks Network (APN)

CAF Chinko Core PA 2014 African Parks Network (APN)

CAF Bamingui-Bangoran 2018 Wildlife Conservation Society (WCS)

CAF Manovo-Gounda-Saint Floris 2018 Wildlife Conservation Society (WCS)

CAF Dzanga-Ndoki 2019 World Wide Fund for Nature (WWF)

CAF Dzanga-Sangha 2019 World Wide Fund for Nature (WWF)

CAF Chinko larger 2020 African Parks Network (APN)

COD Garamba 2005 African Parks Network (APN)

COD Gangala-na-Bodio 2005 African Parks Network (APN)

COD Virunga 2008 Virunga Foundation (VF)

COD Salonga 2015 World Wide Fund for Nature (WWF)

COD Upemba 2017 Forgotten Parks Foundation (FPF)

COD Kundelungu 2017 Forgotten Parks Foundation (FPF)

COD Lubudi-Sampwe 2017 Forgotten Parks Foundation (FPF)

COD Lac Tshangalele 2017 Forgotten Parks Foundation (FPF)

COD Okapis 2019 Wildlife Conservation Society (WCS)

COD Lomami National Park 2019 Frankfurt Zoological Society (FZS)

COD Kahuzi-Biega 2022 Wildlife Conservation Society (WCS)

COG Lac Télé 2008 Wildlife Conservation Society (WCS)

COG Odzala Kokoua 2010 African Parks Network (APN)

COG Nouabalé-Ndoki 2014 Wildlife Conservation Society (WCS)

COG Ntokou-Pikounda 2018 World Wildlife Fund

COG Conkouati-Douli 2021 Noe

MDG Makira 2012 Wildlife Conservation Society

MDG Iles Barren 2014 ONG Blue Ventures

MDG Bongolava 2015 Fikambananana Bongolava Maintso

MDG Mahavavy Kinkony 2015 Asity Madagascar

MDG Mangoky Ihotry 2015 Asity Madagascar

MDG Tsitongambarika 2015 Asity Madagascar

MDG Torotorofotsy 2015 Asity Madagascar

MDG Beanka 2015 Biodiversity Conservation Madagascar

MDG Sahafina 2015 Biodiversity Conservation Madagascar

MDG Velondriake 2015 Association Velondriake, ONG Blue Ventures

MDG Ambodivahibe 2015 Conservation International

MDG Ankeniheny-Zahamena 2015 Conservation International

MDG Ambositra-Vondrozo 2015 Conservation International

MDG Bombetoka Beloboka 2015 Development and Environmental Law Center

MDG Ambondrobe 2015 Durrell Wildlife Conservation Trust

MDG Lac Alaotra 2015 Durrell Wildlife Conservation Trust
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MDG RiviAre Nosivolo 2015 Durrell Wildlife Conservation Trust

MDG Allie des Baobabs 2015 Association Fanamby

MDG Andrafiamena Andavakoera 2015 Association Fanamby

MDG Anjozorobe-Angavo 2015 Association Fanamby

MDG Loky Manambato 2015 Association Fanamby

MDG Menabe Antimena 2015 Association Fanamby

MDG Maromizaha 2015 Groupe d’Etude et de Recherche sur les Primates de Madagascar (GERP)

MDG Tsinjoriake 2015 Association TAMIA

MDG Nosy Antsoha 2015 Lemuria Land

MDG Ampanangandehibe-Behasina 2015 Madagasikara Voakajy

MDG Analabe Betanatanana 2015 Madagasikara Voakajy

MDG Mahialambo 2015 Madagasikara Voakajy

MDG Mangabe-Ranomena-Sahasarotra 2015 Madagasikara Voakajy

MDG Agnakatrika 2015 Missouri Botanical Garden

MDG Agnalazaha 2015 Missouri Botanical Garden

MDG Ampasindava 2015 Missouri Botanical Garden

MDG Analalava 2015 Madagasikara Voakajy

MDG Ankarabolava 2015 Missouri Botanical Garden

MDG Alandraza Analavelo 2015 Missouri Botanical Garden

MDG Galoko-Kalobinono 2015 Missouri Botanical Garden

MDG Makirovana Tsihomanaomby 2015 Missouri Botanical Garden

MDG Ibity 2015 Missouri Botanical Garden

MDG Oronjia 2015 Missouri Botanical Garden

MDG Pointe 2015 Missouri Botanical Garden

MDG Vohidava-Betsimalaho 2015 Missouri Botanical Garden

MDG Antrema 2015 Museum National d’Histoire Naturelle

MDG Ambatoatsinanana 2015 QIT Madagascar Minerals - Rio Tinto

MDG Petriky 2015 QIT Madagascar Minerals - Rio Tinto

MDG Mandena 2015 QIT Madagascar Minerals - Rio Tinto

MDG Itremo 2015 Royal Botanical Gardens, Kew

MDG Montagne des Fran ais 2015 SAGE

MDG Tsimembo Manambolomaty 2015 The Peregrine Fund

MDG Mandrozo 2015 The Peregrine Fund

MDG Bemanevika 2015 The Peregrine Fund

MDG Mahimborondro 2015 The Peregrine Fund

MDG Manjakatompo Ankaratra 2015 Vondrona Ivon’ny Fampandrosoana

MDG Ankarea 2015 Wildlife Conservation Society

MDG Ankivonjy 2015 Wildlife Conservation Society

MDG Soariake 2015 Wildlife Conservation Society

MDG Amoron’i Onilahy 2015 World Wide Fund for Nature

MDG Ankodida 2015 World Wide Fund for Nature

MDG COMATSA Nord 2015 World Wide Fund for Nature

MDG COMATSA Sud 2015 World Wide Fund for Nature

MDG Nord-Ifotaka 2015 World Wide Fund for Nature

MDG Ambatofotsy 2015 Madagasikara Voakajy

MDG Ampotaka-Ankorabe 2015 Madagasikara Voakajy

MDG Analalava 2015 Madagasikara Voakajy

MOZ Cabo de São Sebastião 2000 Santuario Bravio de Vilanculos (SBV)

MOZ Gilé 2007 IGF Foundation

MOZ Maputo 2008 Peace Parks Foundation (PPF)

MOZ Gorongosa 2008 Carr Foundation
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MOZ Niassa 2012 Wildlife Conservation Society (WCS)

MOZ Zinave 2016 Peace Parks Foundation (PPF)

MOZ Bazaruto 2017 African Parks Network (APN)

MOZ Banhine 2018 Peace Parks Foundation (PPF)

MOZ Limpopo 2018 Peace Parks Foundation (PPF)

MWI Majete Wildlife Reserve 2003 African Parks Network (APN)

MWI Liwonde National Park 2015 African Parks Network (APN)

MWI Nkhotakota Wildlife Reserve 2015 African Parks Network (APN)

MWI Mangochi 2018 African Parks Network (APN)

NER Termit et Tin-Toumma 2018 Noe

NGA Gashaka-Gumti 2018 Africa Nature Investors

RWA Akagera 2010 African Parks Network (APN)

RWA Nyungwe 2020 African Parks Network (APN)

SSD Southern 2016 Fauna and Flora International (FFI)

SSD Kidepo 2022 Enjojo Foundation

SSD Boma 2022 African Parks Network (APN)

SSD Badingilo 2022 African Parks Network (APN)

SSD Lantoto 2022 Enjojo Foundation

TCD Zakouma 2010 African Parks Network (APN)

TCD Sena Oura 2012 Wildlife Conservation Society (WCS)

TCD Ouadi Rimé-Ouadi Achim 2016 Sahara Conservation Fund (SCF)

TCD Bahr Salamat 2017 African Parks Network (APN)

TCD Siniaka-Minia 2017 African Parks Network (APN)

TCD Binder-Léré 2021 Noe

TZA Grumeti G.R. 2002 Grumeti Fund

TZA Ikorongo G.R. 2002 Grumeti Fund

ZMB Kasanka 1990 Kasanka Trust

ZMB Liuwa Plain 2003 African Parks Network (APN)

ZMB Bangweulu 2008 African Parks Network (APN)

ZMB Lavushi Manda 2014 Kasanka Trust

ZMB Nsumbu 2017 Frankfurt Zoological Society (FZS)

ZMB Kafue 2022 African Parks Network (APN)

ZWE Gonarezhou 2007 Frankfurt Zoological Society (FZS)

ZWE Matusadona 2019 African Parks Network (APN)
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Table S2: Comparison of PAs with and Without CMPs

(area in km2, distribution of designation, IUCN categories and type of ecosystems )

Table S2: List of CMPs

Without CMP With CMP

Mean Std. Dev. Mean Std. Dev. Diff. in Means Std. Error

Area in km2 515.5 2665.4 5539.5 13031.7 5023.9*** 1157.6

N Pct. N Pct.

Designation Classified Forest 30 1.2 1 0.8

Community Reserve 2 0.1 1 0.8

Faunal Reserve 10 0.4 4 3.1

Forest Reserve 2126 87.0 1 0.8

Game Management Area 35 1.4 1 0.8

Game Reserve 53 2.2 3 2.4

Hunting Area 13 0.5 2 1.6

Hunting Zone 2 0.1 1 0.8

Monument 0 0.0 2 1.6

National Park 111 4.5 42 33.1

Nature Reserve 13 0.5 2 1.6

Paysage Harmonieux 2 0.1 39 30.7

Protected Area 8 0.3 3 2.4

Reserve 23 0.9 18 14.2

Sanctuary 10 0.4 1 0.8

Special Reserve 0 0.0 3 2.4

Wildlife Reserve 7 0.3 3 2.4

IUCN I 2 0.1 0 0.0

Ib 7 0.3 0 0.0

II 93 3.8 40 31.5

III 3 0.1 2 1.6

IV 121 4.9 11 8.7

Not Reported 2146 87.8 9 7.1

V 4 0.2 39 30.7

VI 69 2.8 25 19.7

NA 0 0.0 1 0.8

Terrestrial / Marine Marine 15 0.6 5 3.9

or Partial Partial 118 4.8 11 8.7

Terrestrial 2312 94.6 111 87.4
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Table S3: Comparison of gridcells from PAs with and Without CMPs before

matching

(biophysical and socio-economic characteristics)
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Table S3: Comparison of treated and control gridcells before matching

Without CMP With CMP

Mean Std. Dev. Mean Std. Dev. Diff. in Means Std. Error

Initial forest cover (2000) 1278.1 936.4 1646.4 888.5 368.3*** 14.1

Moran I forest (2000) 0.5 0.2 0.5 0.3 -0.1*** 0.0

Population cell (2000) 21.2 271.1 10.2 49.9 -11.0*** 2.4

Travel time to nearest village (in min) 298.5 284.9 542.9 480.9 244.4*** 6.7

Travel time to nearest city (in min) 720.2 476.6 1157.2 685.3 436.9*** 9.8

Initial cropland (2003) 0.3 1.3 0.1 0.5 -0.2*** 0.0

Average elevation (in m) 818.1 432.2 643.4 378.9 -174.6*** 6.2

Average slope (in deg) 0.1 0.1 0.1 0.1 0.0*** 0.0

N Pct. N Pct.

Biome Moist forest 2198 15.8 1723 29.6

Dry forest 199 1.4 154 2.6

Grassland, Savanna (GS) 10443 75.2 3689 63.3

Flooded GS 765 5.5 143 2.5

Montane GS 88 0.6 7 0.1

Desert and xeric shrubland 133 1.0 80 1.4

Mangrove 56 0.4 29 0.5
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Table S4: Comparison of gridcells from PAs with and Without CMPs after

matching

(biophysical and socio-economic characteristics)
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Without CMP With CMP

Mean Std. Dev. Mean Std. Dev. Diff. in Means Std. Error

Initial forest cover (2000) 1518.8 908.9 1512.0 914.8 -6.8 21.5

Moran I forest (2000) 0.5 0.3 0.5 0.3 0.0 0.0

Population cell (2000) 8.4 19.2 6.8 20.1 -1.7*** 0.5

Travel time to nearest village (in min) 385.9 331.4 400.8 339.4 14.9+ 7.9

Travel time to nearest city (in min 932.9 549.7 944.9 543.8 12.1 12.9

Initial cropland (2003) 0.0 0.2 0.0 0.2 0.0 0.0

Average elevation (in m) 645.0 333.9 642.0 341.5 -3.0 7.9

Average slope (in deg) 0.1 0.0 0.1 0.0 0.0+ 0.0

N Pct. N Pct.

Biome Moist forest 668 18.5 668 18.5

Dry forest 39 1.1 39 1.1

Grassland, Savanna (GS) 2727 75.5 2727 75.5

Flooded GS 125 3.5 125 3.5

Montane GS 0 0.0 0 0.0

Desert and xeric shrubland 51 1.4 51 1.4

Mangrove 2 0.1 2 0.1

Table S4: Comparison of treated and control gridcells after matching
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Table S5: Baseline results
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Period Estimate SE LB.CI UB.CI N Switchers

Placebo 10 0.10 0.06 -0.02 0.22 8398.00 685.00

Placebo 9 -0.09 0.05 -0.19 0.01 12403.00 1042.00

Placebo 8 0.01 0.05 -0.10 0.11 22116.00 1245.00

Placebo 7 0.04 0.04 -0.04 0.12 27112.00 1581.00

Placebo 6 0.02 0.04 -0.06 0.09 39101.00 2335.00

Placebo 5 -0.13 0.05 -0.23 -0.03 51278.00 2589.00

Placebo 4 -0.04 0.05 -0.14 0.07 57491.00 2873.00

Placebo 3 -0.10 0.05 -0.19 -0.01 70539.00 3076.00

Placebo 2 -0.08 0.04 -0.16 -0.01 77445.00 3565.00

Placebo 1 -0.11 0.04 -0.18 -0.04 87219.00 3600.00

Effect 1 -0.07 0.03 -0.13 0.00 94443.00 3611.00

Effect 2 -0.08 0.04 -0.15 0.00 91845.00 3611.00

Effect 3 -0.01 0.06 -0.13 0.11 84773.00 3122.00

Effect 4 -0.08 0.05 -0.16 0.01 78431.00 3085.00

Effect 5 -0.10 0.05 -0.19 0.00 72150.00 2801.00

Effect 6 -0.16 0.05 -0.26 -0.06 65829.00 2614.00

Effect 7 -0.17 0.07 -0.30 -0.04 59777.00 2097.00

Effect 8 -0.21 0.08 -0.36 -0.06 53655.00 1761.00

Effect 9 -0.19 0.09 -0.36 -0.02 48074.00 1642.00

Effect 10 -0.21 0.10 -0.41 -0.01 42742.00 1285.00

Effect 11 -0.18 0.13 -0.43 0.07 36462.00 1044.00

Effect 12 -0.24 0.13 -0.49 0.00 35362.00 1044.00

Effect 13 -0.42 0.21 -0.83 0.00 29412.00 600.00

Effect 14 -0.43 0.21 -0.85 -0.01 28099.00 600.00

Effect 15 -0.47 0.25 -0.96 0.02 23236.00 516.00

Effect 16 -0.59 0.25 -1.08 -0.11 21610.00 516.00

Av tot eff -0.14 0.07 -0.28 -0.01 158087.00 29949.00

Table S5: Point estimate, standard errors, confidence intervals (LB.CI and UP.CI) and number of

switchers (N) for our baseline regression. The effect was estimated using the R package DIDmulti-

plegtDYN [78]. Each line corresponds to a specific year before treatment (Placebo) and after treat-

ment (Effect). The last line report the estimated average total effect.
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Table S6: Effect of CMP in low pressure PAs
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Placebo_1 0.00 0.01 -0.01 0.01 36394.00 1844.00

Placebo_2 -0.01 0.01 -0.02 0.01 35199.00 1844.00

Placebo_3 0.00 0.01 -0.01 0.02 31840.00 1726.00

Placebo_4 0.01 0.01 -0.01 0.03 25304.00 1643.00

Placebo_5 0.00 0.01 -0.03 0.02 22020.00 1381.00

Placebo_6 0.03 0.02 -0.01 0.06 19184.00 1236.00

Placebo_7 0.02 0.02 -0.01 0.06 13255.00 940.00

Placebo_8 -0.01 0.03 -0.07 0.05 10893.00 782.00

Placebo_9 -0.02 0.03 -0.07 0.04 6104.00 667.00

Placebo_10 0.02 0.03 -0.04 0.07 4096.00 442.00

Effect_1 0.00 0.01 -0.01 0.01 36394.00 1844.00

Effect_2 0.00 0.01 -0.01 0.02 35199.00 1844.00

Effect_3 -0.02 0.01 -0.04 0.00 31840.00 1726.00

Effect_4 0.00 0.02 -0.03 0.03 28838.00 1711.00

Effect_5 -0.02 0.01 -0.04 0.01 25554.00 1449.00

Effect_6 -0.02 0.02 -0.05 0.01 22657.00 1304.00

Effect_7 -0.05 0.02 -0.08 -0.01 19769.00 1086.00

Effect_8 -0.06 0.02 -0.10 -0.03 16975.00 928.00

Effect_9 -0.05 0.02 -0.10 -0.01 14501.00 874.00

Effect_10 -0.06 0.01 -0.09 -0.03 11955.00 649.00

Effect_11 -0.07 0.02 -0.11 -0.04 9129.00 414.00

Effect_12 -0.08 0.02 -0.11 -0.04 8915.00 414.00

Effect_13 -0.11 0.02 -0.16 -0.07 6402.00 207.00

Effect_14 -0.07 0.04 -0.15 0.01 6169.00 207.00

Effect_15 0.01 0.12 -0.23 0.25 4077.00 146.00

Effect_16 -0.07 0.06 -0.19 0.05 3815.00 146.00

Av_tot_eff -0.03 0.01 -0.05 -0.01 68424.00 14949.00

Mean Def Control 0.104

Table S6: Point estimate, standard errors, confidence intervals (LB.CI and UP.CI) and number of

switchers (N) for the effect of CMP in areas that faced low anthropogenic pressures initially. The

effect was estimated using the R package DIDmultiplegtDYN [78]. Each line corresponds to a specific

year before treatment (Placebo) and after treatment (Effect). The last line report the estimated aver-

age total effect.
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Table S6: Effect of CMP in high pressure PAs
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Placebo_1 -0.20 0.07 -0.34 -0.05 43669.00 1756.00

Placebo_2 -0.12 0.08 -0.28 0.03 38780.00 1721.00

Placebo_3 -0.20 0.10 -0.41 0.00 35233.00 1350.00

Placebo_4 -0.06 0.12 -0.31 0.18 28782.00 1230.00

Placebo_5 -0.24 0.11 -0.45 -0.02 25853.00 1208.00

Placebo_6 0.05 0.08 -0.11 0.20 19917.00 1099.00

Placebo_7 0.16 0.10 -0.04 0.36 13857.00 641.00

Placebo_8 0.14 0.13 -0.13 0.40 11223.00 463.00

Placebo_9 -0.09 0.13 -0.35 0.17 6299.00 375.00

Placebo_10 0.52 0.16 0.22 0.83 4302.00 243.00

Effect_1 -0.14 0.07 -0.27 0.00 47281.00 1767.00

Effect_2 -0.18 0.08 -0.33 -0.03 45956.00 1767.00

Effect_3 0.01 0.13 -0.25 0.26 42311.00 1396.00

Effect_4 -0.14 0.10 -0.33 0.06 39100.00 1374.00

Effect_5 -0.18 0.10 -0.38 0.01 36103.00 1352.00

Effect_6 -0.32 0.11 -0.52 -0.11 32964.00 1310.00

Effect_7 -0.33 0.14 -0.59 -0.06 29878.00 1011.00

Effect_8 -0.39 0.16 -0.71 -0.07 26846.00 833.00

Effect_9 -0.34 0.18 -0.70 0.02 24025.00 768.00

Effect_10 -0.33 0.20 -0.73 0.07 21500.00 636.00

Effect_11 -0.27 0.21 -0.68 0.15 18411.00 630.00

Effect_12 -0.38 0.21 -0.79 0.04 17978.00 630.00

Effect_13 -0.55 0.33 -1.19 0.09 15146.00 393.00

Effect_14 -0.58 0.33 -1.22 0.06 14607.00 393.00

Effect_15 -0.63 0.35 -1.31 0.05 12063.00 370.00

Effect_16 -0.79 0.35 -1.48 -0.11 11193.00 370.00

Av_tot_eff -0.26 0.14 -0.53 0.01 78827.00 15000.00

Mean Def Control 0.397

Table S7: Point estimate, standard errors, confidence intervals (LB.CI and UP.CI) and number of

switchers (N) for the effect of CMP in areas that faced high anthropogenic pressures initially. The

effect was estimated using the R package DIDmultiplegtDYN [78]. Each line corresponds to a specific

year before treatment (Placebo) and after treatment (Effect). The last line report the estimated aver-

age total effect.
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